
Introduction to coding

Objectives

1.) Introduction

• orientation in RStudio

• execution command, basic operators

• assigning operator

• vectors

• comments

2.) Syntax and basic functions

• functions, objects, values, syntax

• dataframes and vectors

Basic operators

5+5

[1] 10

2*2

[1] 4

10/2

1

[1] 5

3**2

[1] 9

sqrt(9)

[1] 3

3==3

[1] TRUE

3==4

[1] FALSE

10>5

[1] TRUE

10<5

[1] FALSE

10:20

[1] 10 11 12 13 14 15 16 17 18 19 20

Assigning operator

Syntax: object <- value

Human reading: the assigning operator <- assigns value of the result from the operation on
the right to the object on the left

• it’s a kind of a “save as” function

2

new_object <- 5+5

new_object

[1] 10

my_number <- 20
my_number

[1] 20

my_number+5

[1] 25

my_other_number <- 200
my_number + my_other_number

[1] 220

my_number == 20

[1] TRUE

my_number < my_other_number

[1] TRUE

Creating vectors

my_vector <- c(1, 2, 3, 4, 5)
my_vector

[1] 1 2 3 4 5

3

my_vector + 10

[1] 11 12 13 14 15

my_other_vector <- c(6:10)
my_other_vector

[1] 6 7 8 9 10

my_other_vector + my_vector

[1] 7 9 11 13 15

my_other_vector[2]

[1] 7

Adding comments

• any code in the line after the symbol # will not run
• this is usefull for adding comments to your code or for “switching off” parts of the code

that you don’t want to run at the moment (e.g. drafts, unfinished chunks,…)

this is an important comment
the code bellow will not run:
10 / 2

the code bellow will run, because it's placed before the # sign and not after
10 / 2 # this code divides 10 by 2

[1] 5

4

Exercise

Task:

1.) create one vector which contains 10 numbers from 51 to 60

2.) create another vector which contains 10 numbers from 101 to 110

3.) save the first vector as “vect_1” and second as “vect_2”

4.) subtract (odečti) vect_1 from vect_2 and save the results as “vect_sub”

Solution

vect_1 <- c(51:60)
vect_2 <- c(101:110)

vect_sub <- vect_2 - vect_1
vect_sub

[1] 50 50 50 50 50 50 50 50 50 50

Basic functions and their syntax

• functions always go with parentheses () (závorky)
• functions are doing stuff
• syntax:

function_name(argument1 = value1, argument2 = value2, ...)

Examples of simple functions:

mean()

mean(5:10) # mean = aritmetický průměr

[1] 7.5

5

a <- mean(1:10)
a

[1] 5.5

summary()

summary(1:10)

Min. 1st Qu. Median Mean 3rd Qu. Max.
1.00 3.25 5.50 5.50 7.75 10.00

seq()

my_sequence <- seq(from = 1000, to = 2000, by = 10)
my_sequence

[1] 1000 1010 1020 1030 1040 1050 1060 1070 1080 1090 1100 1110 1120 1130 1140
[16] 1150 1160 1170 1180 1190 1200 1210 1220 1230 1240 1250 1260 1270 1280 1290
[31] 1300 1310 1320 1330 1340 1350 1360 1370 1380 1390 1400 1410 1420 1430 1440
[46] 1450 1460 1470 1480 1490 1500 1510 1520 1530 1540 1550 1560 1570 1580 1590
[61] 1600 1610 1620 1630 1640 1650 1660 1670 1680 1690 1700 1710 1720 1730 1740
[76] 1750 1760 1770 1780 1790 1800 1810 1820 1830 1840 1850 1860 1870 1880 1890
[91] 1900 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000

lenght()

length(my_sequence)

[1] 101

sum()

sum(my_sequence)

[1] 151500

range()

6

range(my_sequence)

[1] 1000 2000

Important - how R behaves

Case sensitivity

• R is case sensitive

new_object <- 5
NEW_OBJECT <- 10

NEW_OBJECT == new_object

[1] FALSE

Different ways of how to write the code

• there are different ways how to write your code, which are all correct. All depends on
your taste. Just be sure all your brackets are closed and you didn’t forget the comma - ,

• have a look at these three ways, all have the same results:

my_sequence <- seq(from = 10, to = 20, by = 2)
my_sequence

[1] 10 12 14 16 18 20

my_sequence <- seq(
from = 10,
to = 20,
by = 2
)

my_sequence

[1] 10 12 14 16 18 20

7

In some functions, you don´t need to specify the parameters, but we recommend you to do so,
at least at the beginning.

my_sequence <- seq(10, 20, 2)
my_sequence

[1] 10 12 14 16 18 20

How R behaves 2

Be carefull with the assigning operator

This chunk of code will show the result, but will not save it (assign it)

sum(1:10)

[1] 55

This chunk, on the other hand, will save your result, but will not show it.

my_result <- sum(1:10)

To show the result, you need to run the object in which you assigned it:

my_result

[1] 55

This will overwrite your original result:

my_result <- 100
my_result

[1] 100

You should therfore use unique object names for each operations:

8

my_result <- sum(1:10)

my_new_result <- 100

my_result

[1] 55

my_new_result

[1] 100

Objects and values

• there are different types of objects and values in R, each type allows you to do different
operations

Objects

• for now, it is enough to introduce the concepts of vectors and dataframes

– vector
∗ a list of items of the same type that are always shown (and manipulated) in the

same order
– dataframe

∗ a table
∗ has rows and columns
∗ rectangular, ie. it has identical number of rows in each column.

Values

• similarly, there are many types of values - characters, numbers, factors.
• for now, all you need to know now is that if you want to do mathematic operations, you

always have to check whether your numbers are really a numbers and not something else,
such as characters

• function str() will quickly tell you what kind of object with what kind of values you
have

9

Vectors

• use c() for creating simple vectors

cisla <- c(1, 2, 3, 4, 5)
cisla

[1] 1 2 3 4 5

stovky <- c(101:105)
stovky

[1] 101 102 103 104 105

• characters must be in quotation marks (uvozovky)

artefacts <- c("pottery", "dagger", "fibula", "spondylus", "dartpoint")
artefacts

[1] "pottery" "dagger" "fibula" "spondylus" "dartpoint"

Note the difference between numbers and characters:

str(cisla)

num [1:5] 1 2 3 4 5

• num = numbers

str(artefacts)

chr [1:5] "pottery" "dagger" "fibula" "spondylus" "dartpoint"

• chr = characters (znaky)

Note: If the vector combines numbers and words, the numbers will automatically be saved as
characters. It will then not be possible to perform mathematical operations on them.

10

divny_vector <- c("pottery", 1, 5, 12, 110)
str(divny_vector)

chr [1:5] "pottery" "1" "5" "12" "110"

Dataframes

• you can create dataframes by binding (vázání) the of the same length (!!!) together
• the columns can be of different data types
• function cbind() binds vectors into columns (sloupce) and then function as.data.frame()

change them into dataframe

df <- as.data.frame(cbind(cisla, stovky, artefacts))
df

cisla stovky artefacts
1 1 101 pottery
2 2 102 dagger
3 3 103 fibula
4 4 104 spondylus
5 5 105 dartpoint

• note that the function cbind() was nested into function as.data.frame()
• nesting functions inside another demands less lines of code, but perhaps makes your code

more complicated
• this is another way how to write the code with same result:

x <- cbind(cisla, stovky, artefacts)
df_2 <- as.data.frame(x)

df_2

cisla stovky artefacts
1 1 101 pottery
2 2 102 dagger
3 3 103 fibula
4 4 104 spondylus
5 5 105 dartpoint

11

Dataframe - structure and types of values

Get the basic information about the dataframe with str()

str(df)

'data.frame': 5 obs. of 3 variables:
$ cisla : chr "1" "2" "3" "4" ...
$ stovky : chr "101" "102" "103" "104" ...
$ artefacts: chr "pottery" "dagger" "fibula" "spondylus" ...

We can see that columns cisla and stovky are not numbers, but characters. To be able for
us to do mathematic operations, we need to change the values into numbers by function
as.numeric()

Note we are use $ to define column we need to change. We will talk about the $ more in the
next slide.

df$cisla <- as.numeric(df$cisla)

df$stovky <- as.numeric(df$stovky)

str(df)

'data.frame': 5 obs. of 3 variables:
$ cisla : num 1 2 3 4 5
$ stovky : num 101 102 103 104 105
$ artefacts: chr "pottery" "dagger" "fibula" "spondylus" ...

Subseting data

Square brackets [,]

• usefull for chosing data based on their position in dataframe or vector (number of row or
column)

• impress your friends with new new English words: column = sloupec, row = řádek, square
brackets = hranaté závorky, subseting = vytváření podskupin, podmnožin

Syntax: name_of_your_dataframe[row_number, column_number]

• subseting first row:

12

df[1,]

cisla stovky artefacts
1 1 101 pottery

• subseting first column:

df[,1]

[1] 1 2 3 4 5

• applying functions on the subsets:

sum(df[,2])

[1] 515

You can even “save” subset with the help of assigning marker <-

druhy_riadok <- df[2,]
druhy_riadok

cisla stovky artefacts
2 2 102 dagger

Subseting data

Subsetting with $

• you can use names of columns, so you don’t need to remember their positions

Syntax: name_of_your_dataframe$name_of_the_column

df$artefacts

[1] "pottery" "dagger" "fibula" "spondylus" "dartpoint"

13

mean(df$stovky)

[1] 103

Now some “fun” with a fake burial ground

Copy and paste this huge piece of code, or open the script “fake_graves.R”

grave_number <- 800:819

dating <- c(
"ne.lin","ne.lin","en.zvo","en.zvo","en.snu","br.une","br.une","br.une","la.a","rstred",
"ne.lin","br.une","en.zvo","en.snu","la.a","br.une","rstred","ne.lin","en.zvo","br.une"

)

sex <- c(
"male","male","male","female","male","female","female","female","male","female",
"male","female","male","female","male","male","female","female","female","male"

)

age <- c(
"31-40","21-30","<11","31-40",">50","31-40",">50","41-50","31-40","<11",
"<11","31-40","21-30",">50","41-50","31-40","21-30","31-40","<11",">50"

)

pottery <- c(
3,4,3,2,5,4,5,3,2,1,
1,6,4,7,3,5,2,5,1,6

)

bronze <- c(
0,0,0,0,0,5,1,2,0,0,
0,3,0,0,0,2,0,0,0,4

)

stone_chipped <- c(
1,1,0,0,2,1,0,0,0,0,
0,1,0,2,0,2,0,1,0,1

)

14

stone_polished <- c(
2,1,0,0,1,0,0,0,0,0,
0,0,0,1,0,0,0,1,0,0

)

grave_length <- c(
210,160,180,250,300,200,225,250,150,100,
90,230,200,260,210,240,180,220,100,270

)

grave_depth <- c(
50, 40, 70,200,250,100, 80, 70, 40, 30,
25,120, 90,180,100,150, 80,120, 30,200

)

df_grave <- as.data.frame(cbind(grave_number, dating, sex, age, pottery, bronze, stone_chipped, stone_polished, grave_length, grave_depth))

df_grave$pottery <- as.numeric(df_grave$pottery)
df_grave$bronze <- as.numeric(df_grave$bronze)
df_grave$stone_chipped <- as.numeric(df_grave$stone_chipped)
df_grave$stone_polished <- as.numeric(df_grave$stone_polished)
df_grave$grave_length <- as.numeric(df_grave$grave_length)
df_grave$grave_depth <- as.numeric(df_grave$grave_depth)

There are more elegant ways to prepare such a table. But for now, this is enough.

str(df_grave)

'data.frame': 20 obs. of 10 variables:
$ grave_number : chr "800" "801" "802" "803" ...
$ dating : chr "ne.lin" "ne.lin" "en.zvo" "en.zvo" ...
$ sex : chr "male" "male" "male" "female" ...
$ age : chr "31-40" "21-30" "<11" "31-40" ...
$ pottery : num 3 4 3 2 5 4 5 3 2 1 ...
$ bronze : num 0 0 0 0 0 5 1 2 0 0 ...
$ stone_chipped : num 1 1 0 0 2 1 0 0 0 0 ...
$ stone_polished: num 2 1 0 0 1 0 0 0 0 0 ...
$ grave_length : num 210 160 180 250 300 200 225 250 150 100 ...
$ grave_depth : num 50 40 70 200 250 100 80 70 40 30 ...

15

Let’s play!

What’s the dating of the graves?

df_grave$dating

[1] "ne.lin" "ne.lin" "en.zvo" "en.zvo" "en.snu" "br.une" "br.une" "br.une"
[9] "la.a" "rstred" "ne.lin" "br.une" "en.zvo" "en.snu" "la.a" "br.une"
[17] "rstred" "ne.lin" "en.zvo" "br.une"

This is bit messy, so let’s use unique() to just get a list of dating categories present:

unique(df_grave$dating) # returns each **unique** value

[1] "ne.lin" "en.zvo" "en.snu" "br.une" "la.a" "rstred"

Which dating group is the most represented?

• table() returns frequency of each value, or in other words, one-way contingency table
(kontingenční tabulka s jednou proměnnou)

table(df_grave$dating)

br.une en.snu en.zvo la.a ne.lin rstred
6 2 4 2 4 2

Let´s play a bit 2

How do the graves dated to “ne.lin” look like?

In other words, we want to subset rows with graves dated to “ne.lin” (AKA kultura s lineární
keramikou)

df_grave_lin <- df_grave[df_grave$dating=="ne.lin",]
df_grave_lin

16

grave_number dating sex age pottery bronze stone_chipped stone_polished
1 800 ne.lin male 31-40 3 0 1 2
2 801 ne.lin male 21-30 4 0 1 1
11 810 ne.lin male <11 1 0 0 0
18 817 ne.lin female 31-40 5 0 1 1

grave_length grave_depth
1 210 50
2 160 40
11 90 25
18 220 120

Don’t worry — we’ll soon learn a more intuitive way to filter and subset data.

How many chipped stone artefacts were found?

sum(df_grave$stone_chipped)

[1] 12

How many pottery pieces were found in each archaeological culture?

This looks complicated at the first sight, but don’t panic:

aggregate(pottery ~ dating, data = df_grave, FUN = sum)

dating pottery
1 br.une 29
2 en.snu 12
3 en.zvo 10
4 la.a 5
5 ne.lin 13
6 rstred 3

Human reading: “Take the variable pottery and compute its sum for each value of dating in
the dataframe df_grave.”

17

Let´s play a bit 2

What is the average length of a grave?

mean(df_grave$grave_length)

[1] 201.25

Is there difference between grave length in dating categories?

aggregate(grave_length ~ dating, data = df_grave, FUN = mean)

dating grave_length
1 br.une 235.8333
2 en.snu 280.0000
3 en.zvo 182.5000
4 la.a 180.0000
5 ne.lin 170.0000
6 rstred 140.0000

Excercise

Task:

1. save your work, clean your workspace and open “fake_graves.R” script

2. run the code to create the dataframe “df_grave”

Answer the following questions:

3. which age group is the most represented?

4. Which category has the longest graves on average?

5. How many bronze artefacts were found?

6. which culture (dating group) had the most bronze tools?

7. subset all female graves and create “df_female_graves” object

8. what is the average number of pottery in female graves?

18

Results:

3. which age group is the most represented?

table(df_grave$age)

<11 >50 21-30 31-40 41-50
4 4 3 7 2

4. Which age group has the longest graves on average?

aggregate(grave_length ~ age, data = df_grave, FUN = mean)

age grave_length
1 <11 117.5000
2 >50 263.7500
3 21-30 180.0000
4 31-40 214.2857
5 41-50 230.0000

5. How many bronze artefacts were found?

sum(df_grave$bronze)

[1] 17

6. Which culture (dating group) had the most bronze artefacts?

aggregate(bronze ~ dating, data = df_grave, FUN = sum)

dating bronze
1 br.une 17
2 en.snu 0
3 en.zvo 0
4 la.a 0
5 ne.lin 0
6 rstred 0

7. subset all female graves and create “df_female_grave” object

19

df_female_grave <- df_grave[df_grave$sex == "female",]

8. what is the average number of pottery in female graves?

mean(df_female_grave$pottery)

[1] 3.6

20

	Objectives
	Basic operators
	Assigning operator
	Creating vectors
	Adding comments
	Exercise
	Task:
	Solution
	Basic functions and their syntax
	Examples of simple functions:

	Important - how R behaves
	Case sensitivity
	Different ways of how to write the code

	How R behaves 2
	Be carefull with the assigning operator

	Objects and values
	Objects
	Values

	Vectors
	Dataframes
	Dataframe - structure and types of values
	Subseting data
	Square brackets [,]

	Subseting data
	Subsetting with $

	Now some ``fun'' with a fake burial ground
	Let's play!
	What's the dating of the graves?
	Which dating group is the most represented?

	Let´s play a bit 2
	How do the graves dated to ``ne.lin'' look like?
	How many chipped stone artefacts were found?
	How many pottery pieces were found in each archaeological culture?

	Let´s play a bit 2
	What is the average length of a grave?
	Is there difference between grave length in dating categories?

	Excercise
	Task:
	Results:

